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In a recent paper} design tables for a
wideband elliptic-function bandstop trans-
mission-line filter have been described. The
method of computation starts from a h.rmped-
element (LE) filter specified in the catalogue
of Saal. Several unit elements (UE), with unit
normalized characteristic impedance, are put
in cascade with this LE fiber. By a succession
of Kuroda’s transformations, these UE are
shifted within the LE 2-port, in order to yield
a structure convenient for implementation
with transmission lines (TL).

The UE in cascade constitute an all-pass
2-port. Hence the original LE filter and the
resulting TL filter have the same attenuation
characteristic. Although the latter is un-
doubtedly elliptic, it does not offer the opti-
mum selectivity attainable with the same ele-
ment cost, because the filtering ability of the
UE in cascade is not made use of when their
characteristic impedances are restricted to
unity. An improved design lifts this restric-
tion and optimizes directly the TL filter
characteristic.

Consider the filter given in Fig. 3 of
Schiffmann and Young.1 Let H(p)=~(p)/g(p)
be the transmittance of a 2-port, where

-f@) and g(p) are polynomials of degree n and
m, respectively. For the filter of Fig. 3,1 n = 4
and m =5. Adding a cascade of four UE yields
the filter of Fig. 51with n= 8 and m =9. With
this value of m it is possible to locate nine
attenuation zeros in the passband instead
of the five attenuation zeros provided by the
design of Schiffmann and Young.1

The approximation p~ocess can be made
according to the theoretical approach of
Ozaki and Ishiiz or can be realized by a com-
puter program yielding a Chebyshev behavior
in both passband and stopbtmd. The ordy
particularity is the compulsory location of
two double roots of ~ at +-1. The two other
pairs of roots off are located in order to
maximize the minimum of attenuation in the
stopband. Simultaneously the nine attenua-
tion zeros are selected to minimize the
maximum of attenuation in the passband.

This process has been applied to the “trial”
filter described in Schiffmann and Young.1

With all other factotx kept constant (0.28 dB
of ripple in the band or 0.25 maximum reflec-

tion coefficient, selectivity specified by band-
width ratios 1 and 0.34), the stopband atten-

uation obtained is 64.9 dB compared to 41.2
dB in Schiffmann and Young; a discrimina-
tion increase of 23.7 dB. The curves are com-
pared in Fig. 1. There is a small difference in
the ripple (less than 0.02 dB) due to rourtding-
off errors.

It is interesting to observe that the atten-
uation ratio (64.9/41 .2) is surprisingly close
to the ratio of effective fihering components
(11/7). This points to the fact that the filter-
ing potential of the UE in cascade equals that
of the UE in the stubs. Neglecting this poten-

tial amounts to a proportional lack in selec-

tivity.

1 B. M. Schiffmam and L. Young, “Design tables for
an elliptic-function bandstop 6tter (N = 5),” IEEE
Trans. Microwave Theory and Techniques, vol. MTT-14,
pp. 474-4S2, October 1966.

z H. Ozski and J. Ishii, “Synthesis of transmission-
Iine networks and the design of UHF filter,” IRE Trans.
Circuit Theory, VO1. CT-2, pp. 325-336, December 1955.
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Fig. 1. (a) Attenuation of the Schiffmann and Young filter (sotid tine) compared to the attenuation of the optimum
filter (dotted line). The frequency axis refers to the imaginary part of the dimensionless complex variable obtained
through Richards’ mapping. (b) Detail of the passband attenuation. The optimum filter presents one attenuation
zero at the origin and four pairs of attenuation zeros versus two pairs for the Schiffmann and Young filter.

From other designs, it appears that the
proportionality of the discrimination to the
number of effective filtering components is a
general rule. This can be justified on the basis
of an image parameter themy. Although the
actual designs are made on an effective be-
havior basis, it is well known that the image
parameter theory gives a good estimate of
the global performances. To take care of the
UE in cascade, Soldi3 has introduced the con-
cept of the ~K+ section. This section has an
image attenuation which is formally the same
as that of a m-derived, lumped parameter half
section, with a value of m larger than unity,
contrary to the common m-derived section.
Nevertheless, this section brings a substantial
amount of attenuation in the stopband. As
far as the sections, with different m values,
produce discriminations of the same order of
magnitude, the total discrimination is pro-
portional to the number of effective filtering
sections.

The new design has been synthesized with
the same structure as represented in Fig. 1
of Schiffmann and Young.1 The values of the
elements, labeled with the same notations, are

Z, = 0.6837 23, = 1.553

z,, = 1.535 Z,’ = 0.9972

2; = 0.6919 Z/’ = 1.884

22” = 2.135 Z,, = 1.416

Z,, = 1.659 2$ = 0.7103.

Z, = 0.4231

As a bonus, the improved design method has
also restricted the range of characteristic im-
pedances to 2.135/0.4231=5.05 compared to
5.147/0.445 =11.6 in Schiffmann and Young.’

To summarize, the solution obtained here
presents some significant improvements with
respect to that obtained in Schiffmann and
Young.’ The importance of the UE in tandem
was emphasized in Ozaki and Ishii ? the last
example givenz meets similar attenuation re-
quirements as the trial filter’ with five UE

8 M. Soldi, “Solution of the approximation problem

for distributed constant titters by means of Darlington
referents filters,” Alta Frequenza, vol. 34, pp. 340-34S,
May 1965.

instead of nine. An optimum design relies on
a slightly more sophisticated method which

requires a computer. As the number of UE in

tandem lies between one third and one half
of the total number of elements, their filtering
capability should be utilized whenever a
computer is available.
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Higher Order Modes in Rectangular

Coaxial Waveguides

A precise determination of the character-
istic impedance of rectangular coaxial wave-
guides has been recently undertaken by
Crnzan and Garver [1] and it is well known
that these structures have many applications
in the design of shielded striplines, varactor
mounts, etc. While their operation is, in gen-
eral, confined to the TEM mode, there are
instances when higher-order modes must be
taken into account; the effect of the latter on
striplines has been studied by Oliner [2],
but there appears to be no record of a similar
investigation applicable to rectangular co-
axial waveguides.

In what follows, a symmetrical structure
will be considered, i.e., the centers of the
inner and outer conductors will be assumed to
coincide. Furthermore, reference will be
made to TEnm and TMn. modes to conform
with standard notation for single-ridge wave-
guides [3] as well as rectangular waveguides.

Inspection of Fig. 1 shows that when
the subscripts m or n or both are even, the
planes of symmetry MN or KL or both are
electric walls and the field pattern may be
deduced from that of the corresponding single-
ridge waveguide. On the other hand, the
TE2m+l,z~+1and TM2fi+1,2~+I (n =0, 1, 2, . 0 . ,
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rrr=o, 1, 2,. . . ) mode patterns cannot be
studied in this manner. Furthermore, while
the TEmO modes in ridge waveguides have
been very adequately studied [3], [6], pub-
lished information concerning other modes is
either incomplete or not available.

The solution of the problem may be
readily accomplished (without recourse to
finite difference methods) using a procedure
due to Butcher [4] as well as Collins and
Daly [5].

Thus, in order to determine the cutoff
frequencies of TM2fi+1, 2~+1modes, it is neces-
sary to solve the wave equation for the cross
section TLBNPF (Fig. 1) subject to the
boundary conditions which require the longi-
tudinal component of the electric field inten-
sity E. to vanish along PFT and LBN while
the normal derivative aE./dn is equal to zero
along PN and TL. Furthermore, it is advan-
tageous [5] to divide the cross section into
two rectangular areas and to match the fields
along the boundary FF’. Using subscripts 1
and 2 to refer to the cross sections TLBF’
and PFF’N, respectively, we tind that

‘s’=;“-’, (:-+)
rrry

. sin — O< y<:
b

r=l,3,5, ”””, odd (1)

O<y<d d#o
m=l,2,3, . . . (2)

where

()mra z
p2m~= —~tat + —

d

()Plrz s — ~2a2 + —‘;a ‘ k=: (3)
c

and & represents the cutoff wavelength. Con-
tinuity of E, along the boundary implies that
E., =E., when x =s/2, s #a; when the equa-
tion is multiplied by sin n~y/b and both sides
integrated from O to b/2 we find that, noting
the orthogonality properties of trigonometric
functions,

@’nsinh’’&L-+)

where

Similarly, continuity of H, along the
boundary FF’ requires that dE,,/8x be
equated to aE,~/ax at x = S12; when the re-
sulting equation is multiplied by sin m~y/d
and both sides integrated from O to d, we find
that

$+’p’KmcOshp’(2-+)
1—. y f$21nP2nI sinh P2m & - (6)
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Fig. 1. Typical mode characteristics of rectangular coaxial waveguides (b/a =0.S, 2d/b =0.6).

Eliminating +~~ from (4) and (6) we have

“Cosh+-i)‘0 ‘7)
where

8dpl,
C&(m) = —

b

Km.Kmn coth p,. :

“g, (8)
P%m

“nr’anhp’r(+-a
and &,= 1 if n = r whereas 8.,= O otherwise.
Equation (7) has a solution only if the deter-
minant vanishes and the cutoff frequencies
may be deduced by setting

det [a~,(o.)] = O. (9)

Let us designate am,(..) an expression obtained
from (8) by letting the summation extend over
all even n and r (commencing with r= n = 2);

similarly, let an,{.t) refer to (8) subject to coth
p,~(s/2a) being replaced by tanh p,~(s/2a), etc.

Then we tind that the cutoff frequencies
of various modes can be deduced by solving
the following equations

TM2.+1.2-: det[a~~,.~~1 = O (10)

TMZ.,Zn+l: det[an,cOt)] = O (11)

TMt~,j~: det[afi,t.~)] = O. (12)

The cutoff frequencies of TE modes may
be obtained in an analogous manner if the
magnetic field intensity H, in regions 1 and 2
is represented as suitable Fourier series and
then the continuity of H. and Ev is satisfied
along the boundary FF’. Introducing a nota-
tion

d
bn,(o,) = 8 —

bpl,A,

PzmC#.n coth pzni ~

“ ~$
Am

+a.tanh+-a ’13)
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where

d

cm, = ~
.r

mry
Cos — Cos

dob
~dy (14)

Am=’2 if m=O, A,=2 if r=O, and A~=A, =l
otherwise and finally letting the subscripts o,
e, c, and thave the same significance as ap-
plied to both an, and bn, (but for the fact that
even summation includes r=iz=O), we find
that the cutoff frequencies of various modes
may be deduced by solving the following
equations

TE,~+,,,n+~:det[bfi,(.,J] = O (15)

TE~fi+l,~~:det[b~,c,.J] = O (16)

TE,~,,~+,: det[b=,:.,J] =0 (17)

TE~~.z~: det[~”ic~~~] =0. (18)

Evidently (10) to (12) and (16) to (18) maybe
used to study modes in single-ridge wave-
guides ;(16) and(18) are, with some changes
in notation, due to Collins and Daly [5].

It can be shown that the cutoff frequencies
of all modes reduce to those of the rectangular
waveguide as the dimensions of the inner con-
ductor tend to zero. Thus, for example, for
T’M,m+l,,m modes we note that when 2d/b = 1,

then for alls (includings = O) we have PI, =pz~,

Km, = Knfi = ~ subject to n= r = m. Hence (10)
reduces to

[ Co’h’’+z+tanh”(+-al
Xconst. = O (19)

which has a solution

and hence

(20)

~=ql, z,..., ln=l,2, . . . . (21)

Equations (20) and (21) hold for TE.zfi+l,?~
modes as well subject to m =0, 1, 2, . . . .

Similarly, when TM.z~,j~+l and TEz~,z~+1
modes are considered, we tind that the plane
s = O represents an electric wall and hence, for
all values of 2d/b, the determinant vanishes
when

(22)

and

,, .2,/(?!)’+ (~)’. (23)

With reference to the curves when s= O, for
the TEOI mode X./a= 1.6 and for the TMZI
mode ~,/a =0.848.

Furthermore, TM,~,,fi and Tf%,,. modes
have two planes of symmetrys = Oand 2d/b = 1
and hence (22) applies in conjunction with

,C4(32+ (:)’. (W

Specifically, when s =0, for the TEXI mode
h./a = 1 and for the TM,, mode A./a= 0.625.

Finally, TEzfi+l ,,~+1and TM2fi+1.2~+1modes
have no planes of symmetry. Whens =0 and
2d/b = 1 determinants (10) and (15) diverge;
however, in practice when 2d/b = 1, b}a =0.8
and s =0.03, numerical computations reveal

the presence of a root hJa = 1.249 while for
the rectangular waveguide corresponding to
s =0, 2d/b = 1, we find that ~Ja = 1.249 as
well.

When d= O ands = a, the coaxial structure
is transformed into two waveguides and the
equations cannot be expected to hold in gen-
eral.

However, a study of the field pattern sug-
gests that when s approaches a, in the limit
the ratio A./a of a coaxial TEu mode tends
to that of a TEIO mode in a rectangular wave-
guide, viz,, ?Ja = 2; similarly, hJa of the
coaxial TEM mode tends to that of a TEu
mode in a rectangular waveguide of reduced
height (when b/a =0.8, 2d/b = 0.6, replacing

b by 0.3b we thd that k,/a = 0.466) etc.
Numerical calculations confirm these con-
jectures.

The convergence with respect tom in both
(8) and (13) is quite rapid and both expressions
vary asymptotically as O(m–s). Furthermore.
the- cutoff frequericies are primarily deter;
mined by a single diagonal term of det [a.,]

or det [b.,] and a 3X 3 determinant is likely
to be adequate for most purposes.

It is of interest to note that the above pro-
cedure entails no approximations other than
those inherent in the assumption that the walls
are lossless. Normalized cutoff wavelength
ratios &/a obtained by Pyle [6] for the TE1O
mode (b/a =0.45) were compared with those
obtained by the evaluation of 2x2 and 3X 3
determinants of (16) and truncating the sum-
mation with respect to m after 8 terms. Typi-
cal results are shown below.

2X2 3X3
d/b s/a Determinant Determinant Reference [61

0.2 0.2 3.769 3.920 3.985
0.2 0.9 2. S92 2.916 2.961
0.s 0.2 2.121 2.140 2.163
0,8 0.9 2.051 2.051 2.057

Some X./a characteristics of a rectangular co-
axial waveguide (such that b/a =0.8,
2d/b =0.6) are presented in Fig. 1.

An examination of these curves shows
that as the frequency is increased and the
propagation of higher-order modes becomes
possible, the TE,, (TEO,) mode appears fol-
lowed by the TEu and TEZO modes (the TW

mode precedes the TEZO mode for some com-
binations of 2d/b and s/a subject to the same
aspect ratio b/a =0.8); it also shows under
what conditions two modes have the same
cutoff frequency and hence velocity of propa-
gation.

ACKNOWLEDGMENT

All computations were carried out on the
Monash University CDC3200 computer.

L. GRUNER

Dept. of Elec. Engrg.
Monash University

Clayton, Victoria
Australia

REFERENCES

[1] O. R. Cruzan and R. V. Garver, “Characteristic
impedance of rectangular coaxial transmission
lines:’ IEEE Trans. A4icrowaoe Theory and Tech-
niques, vol. MTT- 12, pp. 488-495, September 1964.

[2] A. A. Oliner, “Theoretical developments in sym-
metrical strip transmission line,” in Proc. of the
Symp. on Modem Advances in Microwave Tech-
niques. vol. 4. Brooklyn, N. Y.: Polytechnic Press of
the Polytechnic Institute of Brooklyn, 1954.

485

[3] S. Hopfer, “The design of ridged waveguides,”
IRE Trans. Microwave Theorv and Techniques, vol.
MTT-3, pp. 20-29, October i955. “

[4] P. N. Butcher, “A theoretical study of propagation
along tape ladder lines,” Proc. IEE (London), pt.
B, vol. 104, pp. 169–176, March 1957.

[5] J. H. Collins and P. Daly, “Orthogonal mode
theory of single-ridge waveguides,” J. Electronics
and Cotitrol, vol. 17, pp. 121-129, August 1964.

[6] J. R. Pyle, “The cutoff wavelength of the TEIO mode
in ridged rectangular waveguide of any aspect ra-
tio,” IEEE Trans. Micro wave Theory and Technqiues,
vol. MTT-14, pp. 175–183, April 1966.

Numerical Solution of TEM-Line Prob-

lems Involving Inhomogeneous Media

Both empirical and analytical methods
have been used in the past to evaluate the
characteristic impedance of transmission lines
supporting the TEM mode of wave propaga-
tion. Most of the analytical methods are rather
tedious for practical use, employ approxima-
tions, or are restricted to simple configura-
tions.

Therefore, in recent years, numerical
methods for the solution of the Laplace
equation in two dimensions in finite difference
form using digital computers have been de-
veloped. From the Laplace equation, the po-
tential distribution over the cross section of
the transmission line is obtained, and inte-
grating the potential gradient along a path
enclosing the inner conductor yields the
capacitance per unit length, This capacitance
is used to determine the characteristic imped-
ance and phase velocity of the line. Greenl
and Schneider2 have investigated these pro-
cedures and used them to obtain interesting
and useful results. For further information,
these two papers or the numerous references
cited in them should be consulted. The error
involved in the assumption that a transmiss-
ion line with inhomogeneous medium sup-
ports a pure TEM mode is a fraction of a
percent up to frequencies of several gigahertz
for configurations with similar dimensions to
those under investigation in this correspon-
dence.

With the use of integrated circuits on ce-
ramic substrates suspended between two
parallel ground planes, the knowledge of the
characteristic impedance and phase velocity of
such transmission lines in inhomogeneous
media is necessary. The purpose of this
correspondence is to investigate these two
quantities as a function of the various param-
eters defining the structure of the cross sec-
tion.

The configuration which is discussed in
this correspondence is shown in Fig, 1: two
parallel ground planes with a spacing g be-
tween them. Centered between these ground
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