CORRESPONDENCE

In a recent paper,' design tables for a
wideband elliptic-function bandstop trans-
mission-line filter have been described. The
method of computation starts from a lumped-
element (LE) filter specified in the catalogue
of Saal. Several unit elements (UE), with unit
normalized characteristic impedance, are put
in cascade with this LE filter. By a succession
of Kuroda’s transformations, these UE are
shifted within the LE 2-port, in order to yield
a structure convenient for implementation
with transmission lines (TL).

The UE in cascade constitute an all-pass
2-port. Hence the original LE filter and the
resulting TL filter have the same attenuation
characteristic. Although the latter is un-
doubtedly elliptic, it does not offer the opti-
mum selectivity attainable with the same ele-
ment cost, because the filtering ability of the
UE in cascade is not made use of when their
characteristic impedances are restricted to
unity. An improved design lifts this restric-
tion and optimizes directly the TL filter
characteristic.

Consider the filter given in Fig. 3 of
Schiffmann and Young.! Let H(p)={(p)/s(p)
be the transmittance of a 2-port, where
f(p) and g(p) are polynomials of degree » and
m, respectively. For the filter of Fig. 3, n=4
and m =35. Adding a cascade of four UE yields
the filter of Fig. 5! with n=8 and m=9, With
this value of m it is possible to locate nine
attenuation zeros in the passband instead
of the five attenuation zeros provided by the
design of Schiffmann and Young.!

The approximation process can be made
according to the theoretical approach of
Ozaki and Ishii? or can be realized by a com-
puter program yielding a Chebyshev behavior
in both passband and stopband. The only
particularity is the compulsory location of
two double roots of fat +1. The two other
pairs of roots of f are located in order to
maximize the minimum of attenuation in the
stopband. Simultaneously the nine attenua-
tion zeros are selected to minimize the
maximum of attenuation in the passband.

This process has been applied to the “trial”
filter described in Schiffmann and Young.!
With all other factors kept constant (0.28 dB
of ripple in the band or 0.25 maximum reflec-
tion coefficient, selectivity specified by band-
width ratios 1 and 0.34), the stopband atten-
uation obtained is 64.9 dB compared to 41.2
dB in Schiffmann and Young,! a discrimina-
tion increase of 23.7 dB. The curves are com-
pared in Fig. 1. There is a small difference in
the ripple (less than 0.02 dB) due to rounding-
off errors.

It is interesting to observe that the atten-
uation ratio (64.9/41.2) is surprisingly close
to the ratio of effective filtering components
(11/7). This points to the fact that the filter-
ing potential of the UE in cascade equals that
of the UE in the stubs. Neglecting this poten-
tial amounts to a proportional lack in selec-
tivity.

1 B, M. Schiffmann and L. Young, *‘Design tables for
an elliptic-function bandstop filter (N=5),” IEEE
Trans. Microwave Theory and Techniques, vol. MTT-14,
pp. 474-482, October 1966.

2 H. Ozaki and J. Ishii, “Synthesis of transmission-
line networks and the design of UHF filter,” IRE Trans.
Circuit Theory, vol. CT-2, pp. 325-336, December 1955,
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Fig. 1.(a) Attenuation of the Schiffmann and Young filter (solid line) compared to the attenuation of the optimum
filter (dotted line). The frequency axis refers to the imaginary part of the dimensionless complex variable obtained
through Richards’ mapping. (b) Detail of the passband attenuation. The optimum filter presents one attenuation
zero at the origin and four pairs of attenuation zeros versus two pairs for the Schiffmann and Young filter.

From other designs, it appears that the
proportionality of the discrimination to the
number of effective filtering components is a
general rule. This can be justified on the basis
of an image parameter theory. Although the
actual designs are made on an effective be-
havior basis, it is well known that the image
parameter theory gives a good estimate of
the global performances. To take care of the
UE in cascade, Soldi? has introduced the con-
cept of the $Ky section. This section has an
image attenuation which is formally the same
as that of a m-derived, lumped parameter half
section, with a value of m larger than unity,
contrary to the common m-derived section.
Nevertheless, this section brings a substantial
amount of attenuation in the stopband. As
far as the sections, with different m values,
produce discriminations of the same order of
magnitude, the total discrimination is pro-
portional to the number of effective filtering
sections.

The new design has been synthesized with
the same structure as represented in Fig. 1
of Schiffmann and Young.! The values of the
elements, labeled with the same notations, are

Z, = 0.6837 Z3y = 1.553
Zyy = 1.535 Zy =0.9972
Zy = 0.6919 Z = 1.884
Zy' =2135 Zy = 1416
Zy; = 1.659 Z5; = 0.7103.

Z3 = 0.4231

As a bonus, the improved design method has
also restricted the range of characteristic im-
pedances to 2.135/0.4231 =5.05 compared to
5.147/0.445=11.6 in Schiffmann and Young.!

To summarize, the solution obtained here
presents some significant improvements with
respect to that obtained in Schiffmann and
Young.! The importance of the UE in tandem
was emphasized in Ozaki and Ishii:? the last
example given? meets similar attenuation re-
quirements as the trial filter! with five UE

8 M. Soldi, “Solution of the approximation problem
for distributed constant filters by means of Darlington
reference filters,” Alta Frequenza, vol. 34, pp., 340-348,
May 1965.

instead of nine. An optimum design relies on

a slightly more sophisticated method which

requires a computer. As the number of UE in

tandem lies between one third and one half

of the total number of elements, their filtering

capability should be utilized whenever a
computer is available.
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Higher Order Modes in Rectangular
Coaxial Waveguides

A precise determination of the character-
istic impedance of rectangular coaxial wave-
guides has been recently undertaken by
Cruzan and Garver [1] and it is well known
that these structures have many applications
in the design of shielded striplines, varactor
mounts, etc. While their operation is, in gen-
eral, confined to the TEM mode, there are
instances when higher-order modes must be
taken into account; the effect of the latter on
striplines has been studied by Oliner [2],
but there appears to be no record of a similar
investigation applicable to rectangular co-
axial waveguides.

In what follows, a symmetrical structure
will be considered, i.e., the centers of the
inner and outer conductors will be assumed to
coincide. Furthermore, reference will be
made to TE,,, and TM,,, modes to conform
with standard notation for single-ridge wave-
guides [3] as well as rectangular waveguides.

Inspection of Fig. 1 shows that when
the subscripts m or n or both are even, the
planes of symmetry MN or KL or both are
electric walls and the field pattern may be
deduced from that of the corresponding single-
ridge waveguide. On the other hand, the
TE2n+1,2m+l and TM2n+1.2m+1 (n=0’ 1, 2; R
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m=0, 1, 2, - - -) mode patterns cannot be
studied in this manner. Furthermore, while
the TE,, modes in ridge waveguides have
been very adequately studied [3], [6], pub-
lished information concerning other modes is
either incomplete or not available.

The solution of the problem may be
readily accomplished (without recourse to
finite difference methods) using a procedure
due to Butcher [4] as well as Collins and
Daly [5].

Thus, in order to determine the cutoff
frequencies of TMzn11,2m+1 Modes, it is neces-
sary to solve the wave equation for the cross
section TLBNPF (Fig. 1) subject to the
boundary conditions which require the longi-
tudinal component of the electric field inten-
sity E, to vanish along PFT and LBN while
the normal derivative 6E,/on is equal to zero
along PN and TL. Furthermore, it is advan-
tageous [5] to divide the cross section into
two rectangular areas and to match the fields
along the boundary FF’. Using subscripts 1
and 2 to refer to the cross sections TLBF
and PFF'N, respectively, we find that
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and A represents the cutoff wavelength. Con-
tinuity of E, along the boundary implies that
E.=FE, when x=s/2, s¥*a; when the equa-
tion is muitiplied by sin nwry/b and both sides
integrated from 0 tc 5/2 we find that, noting
the orthogonality properties of trigonometric
functions,
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Similarly, continuity of H, along the
boundary FF’ requires that 8K, /dx be
equated to 9E,»/dx at x=s5/2; when the re-
sulting equation is multiplied by sin m=xy/d
and both sides integrated from 0 to d, we find
that

= s 1
r erT h r (— - '_)
2 upsrFn cosh pie (5 = 5

1
2

i 8
P2mPem SIDh Py — - (6)
23,

*fa

c

TELOQ

\

TeOl

TEIL

TE20Q

05 =0
F————— ]
\'\_
0 0.2 0.4 0.6 0.8 s/a 1
Fig. 1. Typical mode characteristics of rectangular coaxial waveguides (b/a =0.8, 2d/b =0.6).

Eliminating ¢, from (4) and (6) we have
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and 8,,=1 if n=r whereas 8,,=0 otherwise.
Equation (7) has a solution only if the deter-
minant vanishes and the cutoff frequencies
may be deduced by setting

det [am (oe)] = 0. 9

Let us designate au.(.) an expression obtained
from (8) by letting the summation extend over
all even » and r (commencing with r=n=2);

similarly, let a,. s refer to (8) subject to coth
P8/ 2a) being replaced by tanh ps,.(s/2a), etc.

Then we find that the cutoff frequencies
of various modes can be deduced by solving
the following equations

TM2n+l.2m: det[anr(ec)] =0 (10)
TM2n,2m+1: det[anr(ot)] =0 (11)
TMon.om: det[anr(st)] =0. (12)

The cutoff frequencies of TE modes may
be obtained in an analogous manner if the
magnetic field intensity H, in regions 1 and 2
is represented as suitable Fourier series and
then the continuity of H, and E, is satisfied
along the boundary FF’. Introducing a nota-
tion
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where

Crr = T f cos cosm y dy (14)

d
Ap=21if m=0, A,=2 if r=0, and A,=A,=1
otherwise and finally letting the subscripts o,
e, ¢, and ¢ have the same significance as ap-
plied to both a,, and b, (but for the fact that
even summation includes r=n=0), we find
that the cutoff frequencies of various modes
may be deduced by solving the following
equations

TE2n+1,2m+1: det[bnr(gr)] =0 (15)
TEun+1,2m: det[barcey] = 0 (16)
TEoap, 041t det[bm(ot>] =0 17
TEzn,sz det[b,.,(,,,t>] = 0. (18)

Evidently (10) to (12) and (16) to (18) may be
used to study modes in single-ridge wave-
guides; (16) and (18) are, with some changes
in notation, due to Collins and Daly [5].

It can be shown that the cutoff frequencies
of all modes reduce to those of the rectangular
waveguide as the dimensions of the inner con-
ductor tend to zero. Thus, for example, for
TMa,. 1.2, modes we note that when 2d/b=1,
then for all s (including s =0) we have pi, = pom,
K.y=K,.=1 subject to n=r=m. Hence (10)
reduces to

s 1 s
[coth pu{)—a + tanh Pir (T — %)]

X const. = 0 (19)

which has a solution

eth""zo (20)
and hence
—WW’”“) ()
n=012 =1,2---. (1)

Equations (20) and (21) hold for TEzn 1.0m
modes as well subject to m=0,1,2, - -.

Similarly, when TMan,ony and TEsnemi
modes are considered, we find that the plane
s=0 represents an electric wall and hence, for
all values of 24/b, the determinant vanishes
when

tanh % =0 (22)

o)+ ()

With reference to the curves when s=0, for
the TEy mode \./a=1.6 and for the TMy,
mode \;/a=0.848.

Furthermore, TMs,.2n and TEs,, 2, modes
have two planes of symmetry s =0 and 2d/b=1
and hence (22) applies in conjunction with

e/ () + ()

Specifically, when s=0, for the TE; mode
N./a=1 and for the TMy mode A./a=0.625.

Finally, TEz.41,2m41 80d TMay 41,9, s modes
have no planes of symmetry. When s=0 and
2d/b=1 determinants (10) and (15) diverge;
however, in practice when 2d/b=1, b/a=0.8
and s=0.03, numerical computations reveal

and

(23)

@)

the presence of a root \./a=1.249 while for
the rectangular waveguide corresponding to
s=0, 2d/b=1, we find that \./a=1.249 as
well.

When d=0 and s =a, the coaxial structure
is transformed into two waveguides and the
equations cannot be expected to hold in gen-
eral.

However, a study of the field pattern sug-
gests that when s approaches a, in the limit
the ratio A\./a of a coaxial TE;; mode tends
to that of a TE,, mode in a rectangular wave-
guide, viz,, \/a=2; similarly, A,/a of the
coaxial TE;; mode tends to that of a TEy
mode in a rectangular waveguide of reduced
height (when b/a=0.8, 2d/b=0.6, replacing
b by 0.3b we find that \,/a=0.466) etc.
Numerical calculations confirm these con-
jectures.

The convergence with respect to m in both
(8) and (13) is quite rapid and both expressions
vary asymptotically as 0(m~3). Furthermore,
the cutoff frequencies are primarily deter-
mined by a single diagonal term of det{an]
or det[h,.] and a 3X3 determinant is likely
to be adequate for most purposes.

1t is of interest to note that the above pro-
cedure entails no approximations other than
those inherent in the assumption that the walls
are lossless. Normalized cutoff wavelength
ratios \./a obtained by Pyle [6] for the TE,,
mode (b/a=0.45) were compared with those
obtained by the evaluation of 2X2 and 3X3
determinants of (16) and truncating the sum-
mation with respect to m after 8 terms. Typi-
cal results are shown below.

2X2 3X3
d/b s/a Determinant Determinant Reference [6]
0.2 0.2 3.769 3.920 3.985
0.2 0.9 2.892 2.916 2.961
0.8 0.2 2.121 2.140 2.163
0.8 0.9 2.051 2.051 2.057

Some \./a characteristics of a rectangular co-
axial waveguide (such that 5/a=0.8,
2d/b=0.6) are presented in Fig. 1.

An examination of these curves shows
that as the frequency is increased and the
propagation of higher-order modes becomes
possible, the TE;, (TEy) mode appears fol-
lowed by the TE;; and TEz, modes (the TMy
mode precedes the TE;, mode for some com-
binations of 2d/b and s/a subject to the same
aspect ratio b/a=0.8); it also shows under
what conditions two modes have the same
cutoff frequency and hence velocity of propa-
gation.
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Numerical Solution of TEM-Line Prob-
lems Involving Inhomogeneous Media

Both empirical and analytical methods
have been used in the past to evaluate the
characteristic impedance of transmission lines
supporting the TEM mode of wave propaga-
tion, Most of the analytical methods are rather
tedious for practical use, employ approxima-
tions, or are restricted to simple configura-
tions.

Therefore, in recent years, numerical
methods for the solution of the Laplace
equation in two dimensions in finite difference
form using digital computers have been de-
veloped. From the Laplace equation, the po-
tential distribution over the cross section of
the transmission line is obtained, and inte-
grating the potential gradient along a path
enclosing the inner conductor yields the
capacitance per unit length. This capacitance
is used to determine the characteristic imped-
ance and phase velocity of the line. Green!
and Schneider? have investigated these pro-
cedures and used them to obtain interesting
and useful results. For further information,
these two papers or the numerous references
cited in them should be consulted. The error
involved in the assumption that a transmis-
sion line with inhomogeneous medium sup-
ports a pure TEM mode is a fraction of a
percent up to frequencies of several gigahertz
for configurations with similar dimensions to
those under investigation in this correspon-
dence.

With the use of integrated circuits on ce-
ramic substrates suspended between two
parallel ground planes, the knowledge of the
characteristic Impedance and phase velocity of
such transmission lines in inhomogeneous
media is necessary. The purpose of this
correspondence is to investigate these two
quantitites as a function of the various param-
eters defining the structure of the cross sec-
tion.

The configuration which is discussed in
this correspondence is shown in Fig. 1: two
parallel ground planes with a spacing g be-
tween them. Centered between these ground
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